

The Psychophysiological Link Between Chronic Stress and Accelerated Skin Aging: A Comprehensive Literature Review

Edward Edwin¹, Putu Dyah Ayu Saraswati², Ariel Ekaputra³, Dana Parama Julius⁴, Ni Made Wiliantari⁵

Departemen Kulit dan Kelamin, RSUD Wangaya, Denpasar, Bali ¹⁻⁵

Email: edwardedwin4898@gmail.com¹, dyahramadi@yahoo.com², ariel.tjahyadi@gmail.com³,
danaparama123@gmail.com⁴, nmwiliantari@gmail.com⁵

Informasi	Abstract
Volume : 2 Nomor : 10 Bulan : Oktober Tahun : 2025 E-ISSN : 3062-9624	<p><i>Chronic psychological stress has emerged as a significant but often overlooked factor contributing to premature skin aging. Beyond its well-known systemic effects, sustained stress disrupts the delicate neuroendocrine-immune balance that maintains skin homeostasis. Elevated cortisol and catecholamine levels impair collagen synthesis, increase oxidative stress, and compromise epidermal barrier integrity, thereby accelerating wrinkle formation, dehydration, and loss of elasticity. Moreover, psychoneuroimmunologic pathways involving the hypothalamic-pituitary-adrenal (HPA) axis and sympathetic activation induce chronic low-grade inflammation and telomere shortening, further promoting cellular senescence in dermal fibroblasts. This review synthesizes evidence from dermatologic, neuroscientific, and psychosomatic research to elucidate the mechanisms linking chronic stress and skin aging. Mind-body interventions such as mindfulness, yoga, and cognitive-behavioral therapy have shown potential to modulate cortisol levels and improve skin parameters, highlighting the clinical value of integrative psychodermatology. Understanding this mind-skin connection may inform novel strategies for both aesthetic and therapeutic dermatology by addressing psychological well-being as a core determinant of cutaneous youth and resilience.</i></p>

Keyword: chronic stress, skin aging, cortisol, psychodermatology, telomere shortening, oxidative stress, neuroendocrine regulation

A. PENDAHULUAN

Skin aging is an inevitable, multifactorial biological process resulting from both intrinsic and extrinsic factors. Intrinsic aging is driven by genetic programming, hormonal fluctuations, and cellular senescence, while extrinsic aging is primarily influenced by environmental stressors such as ultraviolet (UV) radiation, pollution, smoking, and nutrition [1,2]. Traditionally, dermatologic research has focused on these two dimensions, yet emerging evidence highlights a third and equally critical component, psychological stress, as a powerful modulator of cutaneous aging [3,4,5,6]. The conceptual foundation of this connection arises from the field of psychoneuroimmunology, which describes the dynamic interactions between the nervous, endocrine, and immune systems in response to emotional and psychological stimuli [6,7,8].

The skin is uniquely positioned at the interface between the body and its environment. Beyond its physical role as a barrier, it acts as a neuroendocrine organ that mirrors the body's internal state [9,10]. Studies have demonstrated that the skin possesses its own hypothalamic-pituitary-adrenal (HPA) axis equivalent, producing corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and cortisol locally in response to stress [9,10,11]. This local HPA-like system works in concert with the central HPA axis, linking psychological stress to cutaneous homeostasis. Under acute conditions, stress responses can be adaptive enhancing immune vigilance, accelerating tissue repair, and maintaining barrier function. However, under chronic or unrelieved stress, persistent glucocorticoid and catecholamine elevation leads to impaired barrier recovery, collagen degradation, and oxidative imbalance, which together contribute to accelerated skin aging [9,12,13].

Multiple pathways underlie this process. Chronic psychological stress increases the production of reactive oxygen species (ROS) and promotes lipid peroxidation within keratinocytes and fibroblasts [1,14]. Elevated ROS levels damage cellular membranes and DNA, triggering mitochondrial dysfunction and reducing dermal elasticity. Concurrently, prolonged cortisol exposure suppresses fibroblast proliferation and collagen type I synthesis while upregulating matrix metalloproteinases (MMP-1 and MMP-3), enzymes responsible for extracellular matrix breakdown [1,3,14]. These biochemical changes resemble those observed in UV-induced photoaging, suggesting that psychological and environmental stressors share convergent molecular pathways [1,3,14].

At the cellular level, chronic stress contributes to telomere shortening, an established biomarker of aging. Telomeres, the protective caps at the ends of chromosomes, progressively

erode with each cell division; psychological stress accelerates this attrition through cortisol-mediated oxidative damage and altered telomerase activity [5,8]. Individuals exposed to long-term emotional stress display shorter leukocyte telomere length, reflecting systemic aging processes that extend to cutaneous tissue [5,16]. In the skin, telomere attrition compromises fibroblast replicative capacity, leading to loss of dermal integrity and slower wound healing [16,17].

The physiological consequences of stress are further compounded by behavioral and lifestyle factors. Chronic stress often coexists with poor sleep, nutritional imbalance, and reduced self-care, all of which exacerbate oxidative and inflammatory damage [17,18,19]. Clinical observations support that individuals experiencing persistent stress exhibit increased transepidermal water loss, decreased hydration, and reduced dermal density, contributing to a visibly aged appearance [15,18]. These changes are not merely cosmetic but signify deeper biochemical alterations in tissue structure and repair mechanisms.

Given the rising prevalence of stress in modern society and its profound implications for dermatologic health, understanding this psychophysiological interface is essential. The concept of the “brain–skin axis” now provides a unifying framework linking emotional well-being with skin physiology [3,6,7,9]. A comprehensive understanding of how chronic stress influences cutaneous aging can inform integrative dermatologic interventions that combine psychological, pharmacological, and lifestyle strategies to preserve skin health and delay aging.

Accordingly, this review explores the current evidence regarding the mechanistic pathways, clinical correlations, and therapeutic approaches related to stress-induced skin aging. The following sections discuss (1) the neuroendocrine and oxidative mechanisms that connect stress and skin aging; (2) human and experimental studies supporting these interactions; and (3) the emerging integrative approaches that address both physiological and psychological dimensions of skin aging.

B. METODE PENELITIAN

This study is a comprehensive literature review aimed at identifying and analyzing existing evidence regarding the relationship between chronic psychological stress and accelerated skin aging. The method used is a literature study, reviewing various articles, journals, and scientific publications relevant to the fields of dermatology, psychoneuroimmunology, and psychosocial research. This study synthesizes findings from various experimental and clinical studies that demonstrate the biochemical mechanisms

linking chronic stress to skin aging, such as increased cortisol levels, oxidative stress, and telomere attrition.

In this review, the authors also analyze approaches that can reduce the impact of stress on skin aging, including mind-body interventions such as mindfulness meditation, yoga, and cognitive-behavioral therapy. Additionally, this research explores evidence from clinical studies showing that stress affects skin function and aesthetic parameters such as epidermal barrier health, hydration, and skin elasticity. By using this approach, the study aims to integrate existing research findings to create a more comprehensive understanding of the relationship between psychological stress and skin aging, while providing insights into therapies that can be applied to prevent and address stress-related skin aging.

C. HASIL DAN PEMBAHASAN

MECHANISTIC PATHWAYS OF STRESS-INDUCED SKIN AGING

The relationship between chronic psychological stress and skin aging is mediated by a web of neuroendocrine, immune, and oxidative processes. The human body possesses an integrated stress-response network that connects the central nervous system, the endocrine glands, and the immune system, forming what is now described as the brain-skin axis [3,6,9,10]. When activated repeatedly or excessively, this axis disturbs cutaneous homeostasis, accelerating biological aging at both cellular and tissue levels.

Neuroendocrine Activation and the HPA Axis

The hypothalamic-pituitary-adrenal (HPA) axis is central to the stress response. Perception of stress by the brain stimulates the hypothalamus to release corticotropin-releasing hormone (CRH), which in turn induces the anterior pituitary to secrete adrenocorticotropic hormone (ACTH), leading to glucocorticoid (cortisol) production from the adrenal cortex. The skin mirrors this system through its own peripheral HPA-like pathway, producing CRH, ACTH, and cortisol locally within keratinocytes and fibroblasts [9,10,11].

Under acute stress, transient glucocorticoid elevation promotes survival and barrier adaptation; however, chronic activation results in detrimental effects. Sustained cortisol exposure suppresses keratinocyte proliferation, delays barrier recovery, and reduces epidermal lipid synthesis [12,13]. Cortisol also inhibits fibroblast activity, decreasing collagen type I and III synthesis while increasing the expression of matrix metalloproteinases (MMP-1 and MMP-3) enzymes responsible for collagen degradation [1,12,15]. Over time, this imbalance

leads to dermal thinning, loss of elasticity, and wrinkle formation, hallmark signs of cutaneous aging.

Sympathetic-Adrenal-Medullary (SAM) System and Catecholamines

Alongside HPA activation, the sympathetic-adrenal-medullary (SAM) pathway releases catecholamines (epinephrine and norepinephrine), enhancing alertness and peripheral blood flow. Chronic sympathetic overdrive, however, causes microcirculatory dysregulation and endothelial oxidative stress. Elevated catecholamines increase mitochondrial ROS production and stimulate inflammatory cytokines such as IL-6 and TNF- α in dermal cells [3,4,9]. Persistent exposure diminishes nutrient delivery to skin tissues and promotes inflammatory cell infiltration, thereby impairing collagen repair and accelerating wrinkle formation.

Oxidative Stress and Reactive Oxygen Species (ROS)

A unifying mechanism linking psychological stress to premature aging is the overproduction of reactive oxygen species. ROS are generated during mitochondrial respiration, UV exposure, and inflammatory responses. Chronic psychological stress up-regulates nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and compromises antioxidant defences such as superoxide dismutase and glutathione peroxidase [1,14].

Excess ROS attack lipids, proteins, and DNA, resulting in lipid peroxidation of cell membranes and cross-linking of structural proteins like collagen and elastin [1]. Mitochondrial DNA is particularly vulnerable, leading to impaired energy metabolism and apoptosis of dermal fibroblasts. Over time, oxidative injury stimulates fibroblasts to secrete MMPs, perpetuating extracellular matrix degradation [1,14,15]. The cumulative effect is comparable to photoaging, indicating that emotional and environmental stressors share convergent oxidative pathways [1,14].

Telomere Attrition and Cellular Senescence

Chronic stress is also associated with accelerated telomere shortening, a fundamental hallmark of cellular aging. Telomeres, repetitive nucleotide sequences that cap chromosomal ends, shorten with each cell division. Psychological stress increases oxidative load and down-regulates telomerase activity, hastening this process [5,8].

Epel et al. [5] first demonstrated that women reporting high perceived stress had significantly shorter leukocyte telomeres than low-stress controls, equivalent to a biological aging difference of nearly a decade. In skin tissue, similar mechanisms are postulated: telomere attrition limits fibroblast proliferative capacity and collagen synthesis, impairing wound repair

and dermal integrity [16,17]. Thus, telomere dynamics provide a molecular bridge between chronic stress and visible cutaneous aging.

Inflammatory Pathways and Immune Dysregulation

Prolonged stress shifts immune balance toward a pro-inflammatory state, increasing circulating cytokines such as IL-1 β , IL-6, and TNF- α while reducing anti-inflammatory mediators like IL-10 [4,6,8]. This systemic inflammation extends to the skin, where cytokines activate transcription factors (e.g., NF- κ B and AP-1) that up-regulate MMPs and down-regulate collagen gene expression [1,4,15]. Inflammatory infiltration also disrupts epidermal barrier proteins, heightening transepidermal water loss (TEWL) and promoting dryness and sensitivity [12,13].

Chronic low-grade inflammation additionally enhances corticosteroid receptor sensitivity, amplifying tissue response to cortisol and reinforcing a self-perpetuating stress loop [3,6,9]. This “inflammaging” phenomenon, a term describing age-associated, chronic inflammation represents a key convergence point between psychological stress, immune dysregulation, and skin aging.

Behavioral and Lifestyle Mediators

Beyond biochemical pathways, behavioral consequences of stress, such as poor sleep, dietary imbalance, and reduced skincare adherence, further exacerbate oxidative and hormonal damage [17,18,19]. Sleep deprivation alone elevates cortisol, reduces epidermal hydration, and delays wound healing [17,18]. Nutritional deficiencies in antioxidants (vitamin C, vitamin E, polyphenols) weaken ROS scavenging capacity, while smoking and alcohol increase oxidative burden. These behavioral mediators transform psychological distress into tangible cutaneous outcomes, emphasizing that the psychosocial environment directly modulates the biological aging of the skin.

CLINICAL AND EMPIRICAL EVIDENCE

While mechanistic models provide a clear biochemical explanation for stress-induced aging, clinical and empirical data are essential for confirming these pathways in real-world populations. Human studies increasingly show that psychological stress influences both the structure and function of the skin, producing quantifiable physiological and aesthetic consequences.

Stress, Barrier Function, and Hydration

Seminal work by Altemus et al. demonstrated that acute psychosocial stress impairs epidermal barrier homeostasis, prolonging recovery time after intentional disruption [13].

Women subjected to laboratory stressors showed increased transepidermal water loss (TEWL) and delayed lipid restoration, confirming that emotional stimuli translate directly into physiological changes in the skin. Later, Garg et al. replicated this finding, showing that heightened stress reactivity reduces barrier recovery and increases skin surface pH, suggesting inflammation-mediated permeability disruption [12].

In a more recent exploratory trial, Pujos et al. reported that individuals with chronic moderate psychological stress exhibited lower dermal density, reduced elasticity, and diminished hydration compared with age-matched controls [15]. These participants also displayed higher circulating cortisol and inflammatory cytokine levels, confirming systemic involvement. The consistency of these findings across decades highlights the robustness of the stress-barrier link.

Delayed Wound Healing and Cellular Repair

The connection between psychological stress and delayed wound repair is well established. Christian et al. observed that stressed individuals show significantly slower re-epithelialization following minor skin injury compared with relaxed controls [17]. The delayed healing was associated with lower interleukin-1 and higher cortisol levels, supporting the hypothesis that endocrine-immune imbalance impairs tissue repair capacity. This pattern aligns with animal studies showing that restraint or isolation stress reduces keratinocyte migration and angiogenesis in wound sites [4,6].

Wound healing delay is not only a clinical inconvenience but also a surrogate marker for impaired regenerative potential. Over time, chronic suppression of fibroblast proliferation and matrix synthesis leads to cumulative dermal thinning and wrinkling, hallmarks of premature skin aging [12,16,17].

Psychological Stress, Sleep, and Visible Aging

Sleep quality is an often-overlooked mediator of the stress-skin relationship. Oyetakin-White et al. demonstrated that poor sleepers display more severe intrinsic aging signs, including fine lines, uneven pigmentation, and decreased elasticity than good sleepers, even after controlling for age and UV exposure [18]. Biochemical analyses revealed elevated cortisol and reduced antioxidant capacity in the sleep-deprived group, supporting the role of oxidative stress in visible aging.

Similarly, stressed individuals frequently experience insomnia and circadian misalignment, which further amplifies HPA activation and ROS accumulation [3,9]. This

bidirectional feedback between psychological distress and sleep disruption constitutes a vicious cycle that accelerates structural decline and impairs repair mechanisms in the skin.

Oxidative Stress Biomarkers and Telomere Studies

Human evidence of oxidative stress in psychological conditions strengthens the biological plausibility of stress-related aging. Kammeyer and Luiten documented increased lipid peroxidation markers and reduced antioxidant enzyme activity in individuals exposed to chronic stress [1]. Moreover, Epel et al. provided compelling evidence that psychological stress correlates with telomere shortening in leukocytes, suggesting a systemic acceleration of cellular aging [5]. Although telomere length has not been widely measured in skin tissue, the parallels between systemic and cutaneous oxidative processes imply similar vulnerability in dermal fibroblasts [8,16].

Psychodermatology and Perceived Skin Aging

From a psychosocial standpoint, stress not only alters biological aging but also changes how aging is perceived. Research in psychodermatology demonstrates that anxiety, depression, and emotional fatigue are frequently associated with self-reported skin dullness, dryness, and premature wrinkling [7]. Jafferany and Franca emphasized that chronic psychological strain contributes to dermatologic conditions such as eczema, psoriasis, and seborrheic dermatitis disorders that themselves accelerate barrier deterioration and aesthetic aging.

In aesthetic medicine, surveys reveal that patients with high perceived stress exhibit greater dissatisfaction with their skin appearance and report faster aging compared to lower-stress counterparts [15]. These findings underscore that psychological burden affects not only the biological but also the subjective dimension of skin aging, reinforcing the need for integrative treatment frameworks that address both mental and physical components.

Population and Occupational Studies

Epidemiological research further validates the relationship between stress exposure and aging biomarkers. Occupational cohorts exposed to high job strain demonstrate reduced dermal density and slower barrier recovery compared with low-stress workers, independent of sun exposure or diet [15]. Similarly, individuals experiencing caregiving or long-term emotional burden display biochemical markers of oxidative stress comparable to those of smokers or individuals with metabolic syndrome [1,4,5]. These results indicate that psychological stress exerts an influence on the skin comparable in magnitude to classical environmental aging factors.

THERAPEUTIC AND PREVENTIVE APPROACHES

Because chronic psychological stress contributes substantially to extrinsic skin aging, modern dermatology increasingly embraces integrative interventions that address both physiological and psychological factors. Evidence suggests that a multidimensional approach—combining stress-management, restorative sleep, targeted nutrition, and antioxidant or topical therapy can restore homeostasis within the brain-skin axis and slow visible aging.

Stress-Reduction and Mind-Body Interventions

Psychological stress reduction remains the most direct route to attenuating stress-related skin damage. Mind-body practices such as mindfulness meditation, yoga, and controlled breathing have demonstrated measurable reductions in cortisol levels, improved immune profiles, and enhanced epidermal barrier recovery [7,19,20]. Regular meditation has been shown to normalize activity in the hypothalamic-pituitary-adrenal (HPA) axis, reduce systemic inflammation, and decrease perceived stress, all of which are central to the prevention of premature skin aging [6,9].

In clinical settings, mindfulness-based cognitive therapy and guided relaxation have led to improved outcomes in stress-exacerbated dermatoses such as psoriasis and atopic dermatitis, conditions that share inflammatory pathways with cutaneous aging [7,20]. These findings imply that psychological interventions can indirectly promote anti-aging effects by normalizing endocrine and immune function.

Restorative Sleep and Circadian Balance

Adequate, high-quality sleep is another cornerstone of skin rejuvenation. During slow-wave sleep, the pituitary gland secretes growth hormone (GH), which stimulates collagen synthesis and accelerates tissue repair [17,18]. Chronic sleep deprivation elevates cortisol, increases reactive oxygen species (ROS), and suppresses GH release, thereby impairing barrier recovery and promoting wrinkle formation [1,14,18].

Clinical evidence by Oyetakin-White et al. confirms that good sleepers display better barrier integrity, higher hydration, and fewer intrinsic aging signs compared with poor sleepers [18]. These findings suggest that promoting consistent circadian rhythms and adequate sleep duration can partially reverse the physiological stress imposed on the skin.

Nutritional and Antioxidant Support

Because oxidative stress is a major pathway in stress-related aging, enhancing antioxidant capacity is a rational therapeutic target. Dietary intake of vitamin C, vitamin E, carotenoids, polyphenols, and coenzyme Q10 can neutralize free radicals and support collagen

stability [1,14,15]. Topical formulations containing green-tea catechins, niacinamide, and resveratrol have demonstrated efficacy in reducing oxidative DNA damage and improving elasticity by modulating MMP activity [1,15].

In vitro, Maeda et al. found that collagen peptides prevent cortisol-induced suppression of collagen type I synthesis in dermal fibroblasts, underscoring the therapeutic potential of bioactive peptides against hormonal stress damage [18]. Furthermore, the maintenance of a balanced diet rich in antioxidants has been associated with improved telomere length and reduced systemic inflammation, supporting the concept of “nutricosmetic resilience.”

Pharmacological and Topical Strategies

Topical agents that mimic the effects of stress reduction or directly counteract oxidative and inflammatory pathways are gaining attention. Corticosteroid-sparing moisturizers that restore ceramide levels can mitigate stress-induced barrier impairment [13]. Compounds targeting 11 β -hydroxysteroid dehydrogenase-1 (11 β -HSD1), an enzyme that converts inactive cortisone to active cortisol in the epidermis, are being investigated for their ability to prevent glucocorticoid-mediated dermal atrophy [12].

In addition, antioxidants such as vitamin C esters, ferulic acid, and lipoic acid, and retinoids that promote collagen production are well-supported interventions against stress-amplified aging [1,2,15]. Combination regimens incorporating retinoids with antioxidants appear to have synergistic effects in reducing oxidative and inflammatory damage.

Adaptogens and Herbal Therapeutics

Phytochemicals known as adaptogens, including *Panax ginseng*, *Rhodiola rosea*, and *Withania somnifera* have shown promise in regulating stress responses via modulation of the HPA axis [20]. These botanicals enhance resistance to physical and psychological stress, normalize cortisol levels, and exhibit intrinsic antioxidant properties. Although robust dermatologic trials remain limited, preliminary evidence suggests potential benefits in preserving collagen structure and improving skin tone when combined with standard skincare regimens [15,20].

Holistic and Integrative Dermatology

The growing field of integrative dermatology advocates combining conventional pharmacologic treatments with lifestyle and psychological counseling. As Jafferany and Franca highlight, addressing emotional well-being alongside topical therapy yields better outcomes for chronic inflammatory and aging-related skin conditions [7]. In practice, dermatologists can

incorporate brief stress-assessment tools, mindfulness guidance, and nutrition counseling into anti-aging programs to tackle both intrinsic and extrinsic drivers of aging.

Furthermore, patient education about the psychoneuroimmunologic link between emotions and skin physiology can improve adherence to treatment and empower individuals to adopt healthier habits that reinforce long-term skin integrity [6,7,15].

FUTURE DIRECTIONS

Although the relationship between chronic psychological stress and skin aging is now widely acknowledged, many mechanistic and clinical aspects remain to be clarified. Future work must bridge gaps between molecular biology, psychoneuroimmunology, and dermatologic practice to develop preventive and therapeutic solutions that are both evidence-based and patient-centered.

Molecular Biomarkers and Objective Metrics

To quantify the biological impact of psychological stress on skin aging, future studies should focus on identifying specific molecular biomarkers. Candidate indicators include cortisol and cortisone ratios within the epidermis, 11 β -hydroxysteroid dehydrogenase-1 (11 β -HSD1) expression, oxidative stress markers such as malondialdehyde, and telomere length in dermal fibroblasts [5,8,12,16]. Non-invasive imaging technologies like high-frequency ultrasound and confocal microscopy could objectively track dermal density and collagen integrity in correlation with psychological scales.

Standardizing such markers would allow dermatologists to quantify stress-related skin damage in both clinical and research settings, facilitating longitudinal monitoring and personalized interventions.

Psychoneuroimmunologic Integration

The brain-skin axis concept provides fertile ground for translational research. Future studies should delineate the bidirectional communication between central stress pathways (HPA and sympathetic systems) and peripheral cutaneous responses [1,3,8,9]. Advanced molecular tools, single-cell RNA sequencing, proteomics, and neuroendocrine mapping, can uncover how stress hormones influence gene expression in keratinocytes, melanocytes, and fibroblasts.

Particular attention should be paid to neuropeptides (substance P, calcitonin gene-related peptide) and mast-cell signaling, which are emerging mediators of emotional stress in skin inflammation and aging. Understanding these connections could yield novel therapeutic targets for pharmacologic modulation of stress responses at the cutaneous level.

Personalized and Integrative Approaches

The move toward personalized psychodermatology is another promising direction. Integrating psychological profiling with genetic, hormonal, and lifestyle assessments may enable individualized anti-aging protocols. Digital applications and wearable sensors can track sleep quality, stress biomarkers, and skin parameters in real time, promoting data-driven self-care.

In clinical settings, interdisciplinary models combining dermatology, psychology, and nutrition have the potential to enhance adherence and long-term outcomes [7,15,20]. Incorporating brief stress-management training and nutritional counseling into cosmetic dermatology could transform patient education into a therapeutic tool.

Novel Therapeutic Targets

Pharmacologic innovation should continue to explore cortisol-modulating agents (11 β -HSD1 inhibitors), mitochondrial antioxidants, and topical adaptogens that directly counteract stress-related biochemical cascades [5,14,20]. Biotechnological advances such as peptide-based signaling modifiers and nanocarrier systems could improve delivery of these compounds to targeted dermal layers.

Equally, lifestyle-derived molecules, polyphenols, omega-3 fatty acids, and microbiome-regulating probiotics offer new frontiers for integrative anti-aging regimens by modulating both systemic inflammation and local oxidative stress [1, 14, 15].

Expanding Clinical Research

Most human studies on stress-induced aging have been cross-sectional; future research must employ longitudinal and interventional designs to establish causality. Randomized controlled trials combining psychological and dermatologic endpoints would validate whether stress reduction or antioxidant therapy truly reverses molecular aging markers. Expanding research to diverse populations and climates will also improve generalizability, given that environmental and cultural factors influence both perceived stress and skin physiology [2,9,15].

D. CONCLUSION

Skin aging is no longer viewed solely as a product of time and environmental exposure, but also as a reflection of the body's psychological state. The cumulative evidence from molecular, clinical, and behavioral studies confirms that chronic psychological stress is a significant extrinsic factor accelerating skin aging. Through persistent activation of the

hypothalamic-pituitary-adrenal (HPA) axis and sympathetic-adrenal-medullary (SAM) system, stress elevates cortisol and catecholamine levels that impair epidermal barrier integrity, reduce collagen synthesis, and heighten oxidative stress. These biochemical disturbances, compounded by inflammation, telomere shortening, and fibroblast dysfunction, lead to visible signs of aging, wrinkles, dryness, and loss of elasticity [1-5,15].

Human studies consistently corroborate these mechanisms. Stressed individuals exhibit delayed wound healing, greater transepidermal water loss, and reduced dermal density compared with non-stressed counterparts [12,13,15,17]. Sleep deprivation, a common consequence of psychological strain, further amplifies these effects through hormonal and oxidative imbalance [17,18,19]. These findings underscore that the mind-skin axis operates bidirectionally: emotional distress influences cutaneous health, while visible skin changes may, in turn, affect psychological well-being.

Addressing stress-related skin aging therefore requires an integrative dermatologic approach. Mind-body interventions, adequate sleep, nutritional optimization, antioxidants, and adaptogenic botanicals together restore systemic balance and enhance skin resilience [11,13-15,20]. The emerging field of psychodermatology offers a framework for uniting dermatologic care with psychological support, emphasizing prevention, patient empowerment, and holistic wellness.

Ultimately, maintaining youthful, healthy skin involves more than topical treatment, it necessitates the cultivation of emotional equilibrium, biological balance, and lifestyle harmony. By acknowledging the profound influence of psychological stress on cutaneous aging, clinicians can pioneer a new paradigm of integrative dermatology that promotes both beauty and well-being from within.

E. DAFTAR PUSTAKA

1. Kammeyer A, Luiten RM. Oxidation events and skin ageing. *Ageing Res Rev*. 2015;21:16-29. doi:10.1016/j.arr.2015.01.001.
2. Farage MA, Miller KW, Elsner P, Maibach HI. Intrinsic and extrinsic factors in skin ageing: a review. *Int J Cosmet Sci*. 2008;30(2):87-95. doi:10.1111/j.1468-2494.2008.00418.x.
3. Chen Y, Lyga J. Brain-skin connection: stress, inflammation and skin aging. *Inflamm Allergy Drug Targets*. 2014;13(3):177-190. doi:10.2174/1871528113666140522104422.
4. Yegorov YE, Poznyak AV, Nikiforov NG, Sobenin IA, Orekhov AN. The link between chronic

stress and accelerated aging. *Aging Dis.* 2020;11(3):509–523. doi:10.14336/AD.2019.0704.

5. Epel ES, Blackburn EH, Lin J, et al. Accelerated telomere shortening in response to life stress. *Proc Natl Acad Sci U S A.* 2004;101(49):17312–17315. doi:10.1073/pnas.0407162101.
6. Arck PC, Paus R. From the brain-skin connection to the neuroendocrine-immune network. *Physiol Rev.* 2020;100(4):125–182. doi:10.1152/physrev.00032.2019.
7. Jafferany M, Franca K. Psychodermatology: basics and practical concepts. *Clin Dermatol.* 2020;38(6):747–756. doi:10.1016/j.cldermatol.2020.07.007.
8. Kaur M, Dhabhar FS, Granstein RD. Psychoneuroimmunology of stress and skin: a conceptual update. *Exp Dermatol.* 2021;30(9):1228–1240. doi:10.1111/exd.14332.
9. Slominski AT, Zmijewski MA, Zbytek B, Tobin DJ. The skin as an endocrine organ: HPA-axis interactions. *Trends Endocrinol Metab.* 2022;33(4):247–261. doi:10.1016/j.tem.2022.01.005.
10. Slominski AT, Zmijewski MA, Skobowiat C, Zbytek B, Slominski RM, Tobin DJ. Sensing the environment: central and local roles of the skin HPA axis. *Endocr Rev.* 2013;34(6):827–884. doi:10.1210/er.2012-1092.
11. Slominski A, Wortsman J, Tuckey RC, Paus R. Differential expression of the hypothalamic–pituitary–adrenal axis homolog in the skin. *J Invest Dermatol.* 2007;127(9):1947–1957. doi:10.1038/sj.jid.5700812.
12. Garg A, Chren MM, Sands LP, Matsui MS, Marenus KD, Feingold KR, Elias PM. Psychological stress perturbs epidermal permeability barrier homeostasis: implications for the pathogenesis of stress-associated skin disorders. *Arch Dermatol.* 2001;137(1):53–59. doi:10.1001/archderm.137.1.53.
13. Altemus M, Rao B, Dhabhar FS, Ding W, Granstein RD. Stress-induced changes in skin barrier function in healthy women. *J Invest Dermatol.* 2001;117(2):309–317. doi:10.1046/j.1523-1747.2001.01373.x.
14. Luiten RM, Bito T, Slominski AT. Stress, oxidative damage, and the skin. *Free Radic Biol Med.* 2023;208:153–165. doi:10.1016/j.freeradbiomed.2023.01.017.
15. Pujos M, Chamayou-Robert C, Parat M, et al. Impact of chronic moderate psychological stress on skin ageing: exploratory clinical study and cellular functioning. *J Cosmet Dermatol.* 2024;23(3):987–995. doi:10.1111/jocd.15213.
16. Maeda T, Matsumura Y, Furukawa F. AP collagen peptides prevent cortisol-induced

decrease of collagen type I in human dermal fibroblasts. *Int J Mol Sci.* 2021;22(9):4788. doi:10.3390/ijms22094788.

17. Christian LM, Graham-Engeland JE, Kiecolt-Glaser JK, Glaser R. Stress and wound healing. *Immunol Allergy Clin North Am.* 2006;26(3):531–552. doi:10.1016/j.iac.2006.05.004.

18. Oyetakin-White P, Suggs A, Koo B, Matsui MS, Yarosh D, Cooper KD, Baron ED. Does poor sleep quality affect skin ageing? *Clin Exp Dermatol.* 2015;40(1):17–22. doi:10.1111/ced.12455.

19. Dunn JH, Koo J. Psychological stress and skin ageing: a review of possible mechanisms and potential therapies. *Dermatol Online J.* 2013;19(6):18561. PMID:24011311.

20. Langan EA, Krajewski C, Paus R. Psychosocial stress and mechanisms of skin health: a comprehensive update. *J Drugs Dermatol.* 2021;20(1):62–68. PMID:33416813.