ANALISIS SENTIMEN PENGGUNA TWITTER TERHADAP INVESTASI KEUANGAN DI INDONESIA MENGGUNAKAN METODE NAIVE BAYES
DOI:
https://doi.org/10.71282/at-taklim.v2i9.725Keywords:
Investment 1 Twitter 2 Naive Bayes 3 SMOTE 4Abstract
Financial investment is important for Indonesian people to prepare for their future financially. In this digital era, social media such as Twitter have become popular platforms for sharing opinions and views on various topics including financial investments. By leveraging the data available on Twitter, sentiment analysis can be used to understand user views and opinions regarding financial investments in Indonesia. The Naive Bayes method can be used to perform sentiment analysis on Twitter data by utilizing probability theory to classify tweets with positive, negative or neutral views about financial investment in Indonesia. The amount of tweet data is unbalanced, so it is necessary to do SMOTE over-sampling so that the dataset is balanced and do the testing using k-fold validation so that you can see the confision matrix and get the values for accuracy, precision, recall, and f1-score. Based on the sentiments obtained from Twitter social media, it shows that Twitter social media users have positive sentiments towards financial investment in Indonesia with a total number of positive sentiments of 426 data from a total of 1000 tweet data. Unbalanced data affects the classification results, namely an accuracy of 45% with the SMOTE up-sampling method and an accuracy of 89% without using the SMOTE up-sampling method.
Downloads
References
Amaliah, F., & Dwi Nuryana, I. K. (2022). Perbandingan akurasi metode lexicon based dan naive bayes classifier pada analisis sentimen pendapat masyarakat terhadap aplikasi investasi pada media twitter. Journal of Informatics and Computer Science (JINACS), 3(03), 384–393. https://doi.org/10.26740/jinacs.v3n03.p384-393
Anggraeni, D. T. (2022). Analisis sentimen vaksinasi booster covid-19 pada platform twitter menggunakan metode naïve bayes. EXPERT: Jurnal manajemen sistem informasi dan teknologi, 12(2), 113. https://doi.org/10.36448/expert.v12i2.2812
Azhar, R., Surahman, A., & Juliane, C. (2022). Analisis sentimen terhadap cryptocurrency berbasis python textblob menggunakan algoritma naïve bayes. Jurnal sains komputer & informatika (J-SAKTI, 6(1), 267–281.
Guntur, M., Santony, J., & Yuhandri, Y. (2018). Prediksi harga emas dengan menggunakan metode naïve bayes dalam investasi untuk meminimalisasi resiko. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 2(1), 354–360. https://doi.org/10.29207/resti.v2i1.276
Haryadi, D., & Mandala, R. (2019). Prediksi harga minyak kelapa sawit dalam investasi dengan membandingkan algoritma naïve bayes, support vector machine dan k-nearest neighbor. IT for society, 4(1). https://doi.org/10.33021/itfs.v4i1.1181
Helmiah, N., Nooraeni, R., Nulkarim, A. R., Munia, N., Susanti, A., Putra, A. P., & Taufiqurrahman, F. (2020). Penerapan metode naïve bayes dalam analisis persepsi masyarakat mengenai rencana pengesahan RUU omnibus law di bidang investasi dan ketenagakerjaan tahun 2020 di Indonesia. Jurnal MSA ( matematika dan statistika serta aplikasinya ), 8(2), 48. https://doi.org/10.24252/msa.v8i2.16743
Leonie Syafira, & Rikumahu, B. (2020). Analisis korelasi sentimen pada twitter terhadap abnormal return saham (studi kasus pada saham indeks Lq45 di twitter). Jurnal mitra manajemen, 4(9), 1322–1335. https://doi.org/10.52160/ejmm.v4i9.458
Niyah, T. Y., & Yamasari, Y. (2021). NBC berbasis ekstraksi fitur untuk analisis sentimen masyarakat terhadap fluktuasi harga saham. Journal of Informatics and Computer Science (JINACS), 3(02), 113–122. https://doi.org/10.26740/jinacs.v3n02.p113-122
Pribadi, M. R., Purnomo, H. D., Hendry, Hartomo, K. D., Sembiring, I., & Iriani, A. (2022). Improving the accuracy of text classification using the over sampling technique in the case of sinovac vaccine. International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 2022-October(October), 106–110. https://doi.org/10.23919/EECSI56542.2022.9946508
Rafih Munir, M. S., Syafrianto, A., & Ilmu Komputer, F. (2022). Sentimen analis thread investasi pada twitter menggunakan naïve bayes. IJCSR: The Indonesian Journal of Computer Science Research, 1, 44–52. https://subset.id/index.php/IJCSR
Rusardi, M. N., Rahayudi, B., & Adikara, P. P. (2022). Analisis sentimen masyarakat terhadap isu new normal scenario berdasarkan opini dari twitter menggunakan algoritma naive bayes classifier. Jurnal pengembangan Teknologi Informasi Dan Ilmu Komputer, 6(3), 1434–1440.
SAPUTRA, T. (2020). Analisis sentimen berita saham menggunakan algoritma naive bayes. Katalog.Ukdw.Ac.Id. http://katalog.ukdw.ac.id/id/eprint/4166
W, B., Riski, I., Dwi, K., Nooraeni, R., Siahaan, T., & Dhea, Y. (2019). Analisis text mining dari cuitan twitter mengenai infrastruktur di Indonesia dengan metode klasifikasi naïve bayes. Eigen mathematics journal, 2(2), 92–101. https://doi.org/10.29303/emj.v1i2.36
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Andreas Danny Agus Wahyudi, Tinaliah (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.










