Implementasi Penerapan Decision Tree dalam Klasifikasi resiko Stroke pada usia muda

Authors

  • Nikodemus Christiano David Prodi Teknik Informatika, STMIK Amikom Surakarta, Sukoharjo Indonesia Author
  • Muhammad Rizky Aggara Prodi Teknik Informatika, STMIK Amikom Surakarta, Sukoharjo Indonesia Author
  • Daffa Islam Fatahillah Prodi Teknik Informatika, STMIK Amikom Surakarta, Sukoharjo Indonesia Author
  • Muhammad Rafi Salman Prodi Teknik Informatika, STMIK Amikom Surakarta, Sukoharjo Indonesia Author
  • Adhika Tyo Ferdiansyah Prodi Teknik Informatika, STMIK Amikom Surakarta, Sukoharjo Indonesia Author

DOI:

https://doi.org/10.71282/jurmie.v2i10.1053

Keywords:

Application of Decision Tree, Stroke risk, young age

Abstract

This research focuses on the application of decision tree methods for identifying the risk of stroke among young adults. Stroke is a significant health concern globally, often leading to long-term disability or death. Identifying individuals at high risk can help in early intervention and prevention strategies. We employed a decision tree algorithm to analyze various risk factors, such as hypertension, diabetes, smoking habits, and physical inactivity. The data was collected from a healthcare database, consisting of young adults aged 18 to 40 years. Our results demonstrate that the decision tree model is effective in classifying individuals with a high risk of stroke, with an accuracy rate of 67,71%. This study suggests that decision tree algorithms can be a valuable tool in clinical settings for early identification and management of stroke risk in young adults. Keywords: decision tree, stroke risk, young adults, machine learning, healthcare

Downloads

Download data is not yet available.

References

R. J. Ridwan, A. I. Pawelloi, and A. Hastuti, “PENERAPAN ALGORITMA C4.5 DECISION TREE UNTUK MENDIAGNOSA PENYAKIT DALAM,” 2024. [Online].

Available: https://jurnal.umpar.ac.id/index.php/sylog

Y. Widiastiwi, I. Ernawati, J. R. Fatmawati, P. Labu, and J. Selatan, “Klasifikasi Penyakit Batu Ginjal Menggunakan Algoritma Decision Tree C4.5 Dengan Membandingkan Hasil Uji Akurasi,” 2021.

R. Ridho, “KLASIFIKASI DIAGNOSIS PENYAKIT COVID-19 MENGGUNAKAN METODE DECISION TREE,” 2021. [Online]. Available: https://jurnal.umj.ac.id/index.php/just-it/index

N. N. Habibah, A. Nazir, I. Iskandar, F. Syafria, L. Oktavia, and I. Syurfi, “Pemodelan Klasifikasi Untuk Menentukan Penyakit Diabetes dengan Faktor Penyebab Menggunakan Decision Tree C4.5 Pada Wanita,” Jurnal Sistem Komputer dan Informatika (JSON), vol. 4, no. 4, p. 654, Jun. 2023, doi: 10.30865/json.v4i4.6202.

Y. Azhar, A. Khoiriyah Firdausy, and P. J. Amelia, “SINTECH Journal | 191 Perbandingan Algoritma Klasifikasi Data Mining Untuk Prediksi Penyakit Stroke,” 2022, [Online]. Available: https://doi.org/10.31598

J. Homepage, F. Akbar, H. Wira Saputra, A. Karel Maulaya, and M. Fikri Hidayat, “MALCOM: Indonesian Journal of Machine Learning and Computer Science Implementation of Decision Tree Algorithm C4.5 and Support Vector Regression for Stroke Disease Prediction Implementasi Algoritma Decision Tree C4.5 dan Support Vector Regression untuk Prediksi Penyakit Stroke,” vol. 2, pp. 61–67, 2022.

I. M. Agus Oka Gunawan, I. D. A. Indah Saraswati, I. D. G. Riswana Agung, and I. P. Eka Putra, “Klasifikasi Penyakit Jantung Menggunakan Algoritma Decision Tree Series C4.5 Dengan Rapidminer,” Jurnal Teknologi Dan Sistem Informasi Bisnis, vol. 5, no. 2, pp. 73–83, Apr. 2023, doi: 10.47233/jteksis.v5i2.775.

J. Teknika and R. Estian Pambudi, “Teknika 16 (02): 221-226,” IJCCS, vol. x, No.x, pp. 1–5.

H. Wendy Ariono, “Sistem Pakar Pengklasifikasi Stadium Kanker Serviks Berbasis Mobile Menggunakan Metode Decision Tree,” 2022. [Online]. Available: http://ejurnal.ubharajaya.ac.id/index.php/JKI

S. F. Damanik, A. Wanto, and I. Gunawan, “Penerapan Algoritma Decision Tree C4.5 untuk Klasifikasi Tingkat Kesejahteraan Keluarga pada Desa Tiga Dolok.” [Online]. Available: https://ejournal.catuspata.com/index.php/jkdn/index

R. Nofitri and N. Irawati, “ANALISIS DATA HASIL KEUNTUNGAN MENGGUNAKAN SOFTWARE RAPIDMINER,” JURTEKSI (Jurnal Teknologi dan Sistem Informasi), vol. 5, no. 2, pp. 199–204, Jul. 2019, doi: 10.33330/jurteksi.v5i2.365.

Downloads

Published

20-10-2025

How to Cite

Implementasi Penerapan Decision Tree dalam Klasifikasi resiko Stroke pada usia muda. (2025). Jurnal Riset Multidisiplin Edukasi, 2(10), 625-632. https://doi.org/10.71282/jurmie.v2i10.1053

Most read articles by the same author(s)

Similar Articles

1-10 of 127

You may also start an advanced similarity search for this article.