Implementasi Penerapan Decision Tree dalam Klasifikasi resiko Stroke pada usia muda
DOI:
https://doi.org/10.71282/jurmie.v2i10.1053Keywords:
Application of Decision Tree, Stroke risk, young ageAbstract
This research focuses on the application of decision tree methods for identifying the risk of stroke among young adults. Stroke is a significant health concern globally, often leading to long-term disability or death. Identifying individuals at high risk can help in early intervention and prevention strategies. We employed a decision tree algorithm to analyze various risk factors, such as hypertension, diabetes, smoking habits, and physical inactivity. The data was collected from a healthcare database, consisting of young adults aged 18 to 40 years. Our results demonstrate that the decision tree model is effective in classifying individuals with a high risk of stroke, with an accuracy rate of 67,71%. This study suggests that decision tree algorithms can be a valuable tool in clinical settings for early identification and management of stroke risk in young adults. Keywords: decision tree, stroke risk, young adults, machine learning, healthcare
Downloads
References
R. J. Ridwan, A. I. Pawelloi, and A. Hastuti, “PENERAPAN ALGORITMA C4.5 DECISION TREE UNTUK MENDIAGNOSA PENYAKIT DALAM,” 2024. [Online].
Available: https://jurnal.umpar.ac.id/index.php/sylog
Y. Widiastiwi, I. Ernawati, J. R. Fatmawati, P. Labu, and J. Selatan, “Klasifikasi Penyakit Batu Ginjal Menggunakan Algoritma Decision Tree C4.5 Dengan Membandingkan Hasil Uji Akurasi,” 2021.
R. Ridho, “KLASIFIKASI DIAGNOSIS PENYAKIT COVID-19 MENGGUNAKAN METODE DECISION TREE,” 2021. [Online]. Available: https://jurnal.umj.ac.id/index.php/just-it/index
N. N. Habibah, A. Nazir, I. Iskandar, F. Syafria, L. Oktavia, and I. Syurfi, “Pemodelan Klasifikasi Untuk Menentukan Penyakit Diabetes dengan Faktor Penyebab Menggunakan Decision Tree C4.5 Pada Wanita,” Jurnal Sistem Komputer dan Informatika (JSON), vol. 4, no. 4, p. 654, Jun. 2023, doi: 10.30865/json.v4i4.6202.
Y. Azhar, A. Khoiriyah Firdausy, and P. J. Amelia, “SINTECH Journal | 191 Perbandingan Algoritma Klasifikasi Data Mining Untuk Prediksi Penyakit Stroke,” 2022, [Online]. Available: https://doi.org/10.31598
J. Homepage, F. Akbar, H. Wira Saputra, A. Karel Maulaya, and M. Fikri Hidayat, “MALCOM: Indonesian Journal of Machine Learning and Computer Science Implementation of Decision Tree Algorithm C4.5 and Support Vector Regression for Stroke Disease Prediction Implementasi Algoritma Decision Tree C4.5 dan Support Vector Regression untuk Prediksi Penyakit Stroke,” vol. 2, pp. 61–67, 2022.
I. M. Agus Oka Gunawan, I. D. A. Indah Saraswati, I. D. G. Riswana Agung, and I. P. Eka Putra, “Klasifikasi Penyakit Jantung Menggunakan Algoritma Decision Tree Series C4.5 Dengan Rapidminer,” Jurnal Teknologi Dan Sistem Informasi Bisnis, vol. 5, no. 2, pp. 73–83, Apr. 2023, doi: 10.47233/jteksis.v5i2.775.
J. Teknika and R. Estian Pambudi, “Teknika 16 (02): 221-226,” IJCCS, vol. x, No.x, pp. 1–5.
H. Wendy Ariono, “Sistem Pakar Pengklasifikasi Stadium Kanker Serviks Berbasis Mobile Menggunakan Metode Decision Tree,” 2022. [Online]. Available: http://ejurnal.ubharajaya.ac.id/index.php/JKI
S. F. Damanik, A. Wanto, and I. Gunawan, “Penerapan Algoritma Decision Tree C4.5 untuk Klasifikasi Tingkat Kesejahteraan Keluarga pada Desa Tiga Dolok.” [Online]. Available: https://ejournal.catuspata.com/index.php/jkdn/index
R. Nofitri and N. Irawati, “ANALISIS DATA HASIL KEUNTUNGAN MENGGUNAKAN SOFTWARE RAPIDMINER,” JURTEKSI (Jurnal Teknologi dan Sistem Informasi), vol. 5, no. 2, pp. 199–204, Jul. 2019, doi: 10.33330/jurteksi.v5i2.365.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Nikodemus Christiano David, Muhammad Rizky Aggara, Daffa Islam Fatahillah, Muhammad Rafi Salman, Adhika Tyo Ferdiansyah (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.










