PENGEMBANGAN SISTEM PENGEMASAN CERDAS BERBASIS NANOSENSOR: KUALITAS PANGAN DAN OBAT-OBATAN
DOI:
https://doi.org/10.71282/jurmie.v2i6.521Keywords:
Smart packaging, nanosensors, nanotechnology, food quality, drug safetyAbstract
Nanosensor-based smart packaging is a leading innovation in ensuring the quality and safety of food and drug products. This technology combines nanomaterials with advanced sensory systems to monitor the condition of products in real-time throughout the supply chain. The system allows for early detection of changes in temperature, humidity, pH, decay gases, and microorganisms, and provides accurate information on product quality. The nanosensors used have advantages in high sensitivity, selectivity, and stability. Despite facing technical challenges such as integration into packaging materials and production sustainability, the development of synthesis methods and fabrication technologies continues to overcome these constraints. The implementation of this smart packaging system has proven to be effective in extending shelf life, improving safety, and reducing product waste. Thus, nanosensors in smart packaging promise sustainable future solutions for the food and pharmaceutical industries.
Downloads
References
Albu, C., Chira, A., Radu, G. L., & Eremia, S. A. V. (2025). Advances in Cost-Effective Chemosensors for Sustainable Monitoring in Food Safety and Processing. Chemosensors, 13(3), 113. https://doi.org/10.3390/chemosensors13030113
Amalia, B., Mailisa, T., Karima, R., & Herman, S. (2021). KARAKTERISASI LABEL KOLORIMETRIK DARI KARAGENAN/NANOFIBER SELULOSA DAN EKSTRAK UBI UNGU UNTUK INDIKATOR KERUSAKAN PANGAN. Jurnal Kimia Dan Kemasan, 43(2), 66. https://doi.org/10.24817/jkk.v43i2.7133
Dodero, A., Escher, A., Bertucci, S., Castellano, M., & Lova, P. (2021). Intelligent Packaging for Real-Time Monitoring of Food-Quality: Current and Future Developments. Applied Sciences, 11(8), 3532. https://doi.org/10.3390/app11083532
Fauzi, L. F., & Rahayu, W. M. (2022). Evaluasi Proses Produksi Kecap Manis Berdasarkan Analisis Bahaya dan Analisis CPPB pada Pabrik Kecap X. Jurnal Teknologi Pangan Dan Hasil Pertanian, 17(2), 17. https://doi.org/10.26623/jtphp.v17i2.4939
Hribar, J., Požrl, T., & Vidrih, R. (2018). Novel technologies in fruit and vegetable processing. Croatian Journal of Food Science and Technology, 10(1), 112. https://doi.org/10.17508/cjfst.2018.10.1.14
Jafarzadeh, S., Yıldız, Z., Yıldız, P., Strachowski, P., Forough, M., Esmaeili, Y., Naebe, M., & Abdollahi, M. (2024). Advanced technologies in biodegradable packaging using intelligent sensing to fight food waste. International Journal of Biological Macromolecules, 261, 129647. https://doi.org/10.1016/j.ijbiomac.2024.129647
Kumar, V., Vaid, K., Bansal, S. A., & Kim, K. (2020). Nanomaterial-based immunosensors for ultrasensitive detection of pesticides/herbicides: Current status and perspectives [Review of Nanomaterial-based immunosensors for ultrasensitive detection of pesticides/herbicides: Current status and perspectives]. Biosensors and Bioelectronics, 165, 112382. Elsevier BV. https://doi.org/10.1016/j.bios.2020.112382
Kuswandi, B., Futra, D., & Heng, L. Y. (2017). Nanosensors for the Detection of Food Contaminants. In Elsevier eBooks (p. 307). Elsevier BV. https://doi.org/10.1016/b978-0-12-811942-6.00015-7
Limthin, D., Leepheng, P., Klamchuen, A., & Phromyothin, D. (2021). Enhancement of Electrochemical Detection of Gluten with Surface Modification Based on Molecularly Imprinted Polymers Combined with Superparamagnetic Iron Oxide Nanoparticles. Polymers, 14(1), 91. https://doi.org/10.3390/polym14010091
Manoj, D., Shanmugasundaram, S., & Anandharamakrishnan, C. (2021). Nanosensing and nanobiosensing: Concepts, methods, and applications for quality evaluation of liquid foods. Food Control, 126, 108017. https://doi.org/10.1016/j.foodcont.2021.108017
Muller, P. A., & Schmid, M. (2019). Intelligent Packaging in the Food Sector: A Brief Overview [Review of Intelligent Packaging in the Food Sector: A Brief Overview]. Foods, 8(1), 16. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/foods8010016
Pal, M., Bulcha, M. R., Banu, M. G., & Lema, A. G. (2021). Emerging Role of Biosensors for Detection of Foodborne Pathogens. American Journal of Microbiological Research, 9(3), 92. https://doi.org/10.12691/ajmr-9-3-4
Panou, A., Lazaridis, D. G., & Karabagias, I. K. (2025). Application of Smart Packaging on the Preservation of Different Types of Perishable Fruits. Foods, 14(11), 1878. https://doi.org/10.3390/foods14111878
Pateiro, M., Gómez, B., Munekata, P. E. S., Barba, F. J., Putnik, P., Kovačević, D. B., & Lorenzo, J. M. (2021). Nanoencapsulation of Promising Bioactive Compounds to Improve Their Absorption, Stability, Functionality and the Appearance of the Final Food Products [Review of Nanoencapsulation of Promising Bioactive Compounds to Improve Their Absorption, Stability, Functionality and the Appearance of the Final Food Products]. Molecules, 26(6), 1547. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/molecules26061547
Wang, Y., & Duncan, T. V. (2016). Nanoscale sensors for assuring the safety of food products [Review of Nanoscale sensors for assuring the safety of food products]. Current Opinion in Biotechnology, 44, 74. Elsevier BV. https://doi.org/10.1016/j.copbio.2016.10.005
Manoj, D., Shanmugasundaram, S., & Anandharamakrishnan, C. (2021). Nanosensing and nanobiosensing: Concepts, methods, and applications for quality evaluation of liquid foods. Food Control, 126, 108017. https://doi.org/10.1016/j.foodcont.2021.108017
Wang, Y., & Duncan, T. V. (2016). Nanoscale sensors for assuring the safety of food products [Review of Nanoscale sensors for assuring the safety of food products]. Current Opinion in Biotechnology, 44, 74. Elsevier BV. https://doi.org/10.1016/j.copbio.2016.10.005
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Amanda Cahyani, Nabila Syifa Firdaus, Nor Latifah (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.