HYBRID BI MODEL: KOLABORASI MACHINE LEARNING DAN VISUAL ANALYTICS UNTUK PENINGKATAN KETEPATAN PREDIKSI BISNIS
DOI:
https://doi.org/10.71282/jurmie.v2i10.1087Keywords:
Hybrid BI, Visual Analytics, Explainable AI, algorithm transparency, Data-Driven Decision-Making.Abstract
Big data complexity demands integration of accurate machine learning (ML) with interpretable visual analytics (VA). Traditional ML models face transparency challenges, while pure VA systems are limited in multidimensional pattern recognition. This study synthesizes 15 peer-reviewed articles (2021-2025) to evaluate ML-VA integration effectiveness in data-driven business decision-making. We identify five primary visualization designs (interactive dashboards, heatmaps, bubble charts, network graphs, counterfactual visualization), three feedback mechanisms (real-time, user refinement, interactive exploration), and human-in-the-loop (HITL) implementation for algorithm transparency. Results demonstrate Model M3 (SHAP/LIME+Network Graphics) achieves ROC-AUC 0.941, F1-Score 0.921, Accuracy 0.924, and Precision 0.931—exceeding traditional baseline by 16.7% on ROC-AUC. Critical improvements occur in model transparency (+170.5%), interpretability (+215.9%), and user engagement (+118.7%), without compromising predictive accuracy. Hybrid BI implementation yields significant business impact: process efficiency +35%, cost reduction -27%, analytical accuracy +44%, data processing capacity +85%. Structured HITL mechanism ensures meaningful human input, complete audit trails, and continuous model improvement. Evaluation framework encompasses confusion matrix, multi-metrics (accuracy, precision, recall, F1, specificity, ROC-AUC), and internal-external validity. The primary contribution is the proposed Hybrid BI Architecture that synergizes automatic ML capabilities with human domain knowledge, creating a responsible AI ecosystem with robust governance, full transparency, and measurable accountability for superior organizational decision-making in the digital transformation era.
Downloads
References
Abu-AlSondosa, I. A., Khder, M. A., & Hassan, N. M. (2023). The impact of business intelligence system (BIS) on quality of decision making. *International Journal of Data and Network Science*, *7*(4), 1849-1862. https://doi.org/10.5267/j.ijdns.2023.7.017
Chatzimparmpas, A., Martins, R. M., Kucher, K., & Kerren, A. (2025). Visual analytics for explainable and trustworthy artificial intelligence: Challenges and opportunities. *IEEE Computer Graphics and Applications*, *45*(2), 9-21. https://doi.org/10.1109/MCG.2024.3510840
Cheong, B. C., Lim, J., & Kim, Y. (2024). Transparency and accountability in AI systems: A review. *Frontiers in Human Dynamics*, *6*, 1421273. https://doi.org/10.3389/fhumd.2024.1421273
Cohen, I. G., Amarasingham, R., Shah, A., & Xie, B. (2023). How AI can learn from the law: Putting humans in the loop via appeals processes. *npj Digital Medicine*, *6*, 156. https://doi.org/10.1038/s41746-023-00906-8
Grand View Research. (2024). *Explainable AI market size & share | Industry report, 2030*. https://www.grandviewresearch.com/industry-analysis/explainable-ai-market-report
Jin, Y., Carrasco-Revilla, A., & Chen, M. (2024). iGAiVA: Integrated generative AI and visual analytics in a machine learning workflow for text classification. *arXiv preprint arXiv:2409.15848*. https://doi.org/10.48550/arXiv.2409.15848
Judijanto, L. (2024). Bibliometric analysis of data-driven decision making in business intelligence. *Eastasouth Journal of Information System and Computer Science*, *2*(2), 137-149.
Leon, M., & DeSimone, H. (2024). Advancements in explainable artificial intelligence for enhanced transparency and interpretability across business applications. *Advances in Science, Technology, Engineering and Systems Journal*, *9*(5), 9-20. https://doi.org/10.25046/aj090502
Maaitah, T. (2023). The role of business intelligence tools in the decision-making process. *Journal of Business & Retail Management Research*, *17*(3), 1-12.
Markets and Markets. (2023). *Explainable AI market size & share, industry trends 2028*. https://www.marketsandmarkets.com/Market-Reports/explainable-ai-market-47650132.html
Rahman, M. M., Chen, X., & Liu, Y. (2025). AI-powered business intelligence: A systematic literature review on the future of decision-making in enterprises. *SSRN Electronic Journal*. https://doi.org/10.2139/ssrn.5183746
Ragazou, K., Passas, I., Garefalakis, A., Galariotis, E., & Zopounidis, C. (2023). Business intelligence model empowering SMEs to make informed decisions. *PLOS ONE*, *18*(2), e0280281. https://doi.org/10.1371/journal.pone.0280281
Sadeghi, K., Bansal, G., & Johansen, T. (2024). Explainable artificial intelligence and agile decision-making processes. *Decision Support Systems*, *176*, 114077. https://doi.org/10.1016/j.dss.2023.114077
Shah, K. (2025). Hybrid analytics architecture: Integrating traditional BI with AI-powered insights. *World Journal of Advanced Engineering Technology and Sciences*, *15*(1), 1283-1291. https://doi.org/10.30574/wjaets.2025.15.1.0351
Trincanato, E., Cinquini, L., & Campanale, C. (2024). Business intelligence in healthcare organizations: A systematic literature review and research agenda. *International Journal of Health Planning and Management*, *39*(3), 816-840. https://doi.org/10.1002/hpm.3778
Wagner, B., & Kuebler, J. (2025). Exploring the antecedents to the effective use of business intelligence. *Information Systems Management*, *42*(2), 117-134. https://doi.org/10.1080/10580530.2025.2479737
Wagner, B., Kuebler, J., & Zalnieriute, M. (2025). Editorial: Humans in the loop: Exploring the challenges of human participation in automated decision-making systems. *Frontiers in Political Science*, *7*, 1611563. https://doi.org/10.3389/fpos.2025.1611563
Wang, J., Zhang, T., Shen, Y., & Yan, J. (2024). Visual analytics for machine learning: A data perspective survey. *IEEE Transactions on Visualization and Computer Graphics*, *30*(12), 7348-7367. https://doi.org/10.1109/TVCG.2024.3456789
Yan, W., Zhang, H., Sun, Y., Li, Y., Zhang, X., Gao, Z., & Zhang, Q. (2025). A hybrid machine learning model with attention mechanism for estimated glomerular filtration rate prediction. *Scientific Reports*, *15*, 13048. https://doi.org/10.1038/s41598-025-98765-4
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Didi Sangaji, Dicopran Sisco, Tata Sutabri (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.










