HYBRID BI MODEL: KOLABORASI MACHINE LEARNING DAN VISUAL ANALYTICS UNTUK PENINGKATAN KETEPATAN PREDIKSI BISNIS

Authors

  • Didi Sangaji Universitas Bina Darma Author
  • Dicopran Sisco Universitas Bina Darma Author
  • Tata Sutabri Universitas Bina Darma Author

DOI:

https://doi.org/10.71282/jurmie.v2i10.1087

Keywords:

Hybrid BI, Visual Analytics, Explainable AI, algorithm transparency, Data-Driven Decision-Making.

Abstract

Big data complexity demands integration of accurate machine learning (ML) with interpretable visual analytics (VA). Traditional ML models face transparency challenges, while pure VA systems are limited in multidimensional pattern recognition. This study synthesizes 15 peer-reviewed articles (2021-2025) to evaluate ML-VA integration effectiveness in data-driven business decision-making. We identify five primary visualization designs (interactive dashboards, heatmaps, bubble charts, network graphs, counterfactual visualization), three feedback mechanisms (real-time, user refinement, interactive exploration), and human-in-the-loop (HITL) implementation for algorithm transparency. Results demonstrate Model M3 (SHAP/LIME+Network Graphics) achieves ROC-AUC 0.941, F1-Score 0.921, Accuracy 0.924, and Precision 0.931—exceeding traditional baseline by 16.7% on ROC-AUC. Critical improvements occur in model transparency (+170.5%), interpretability (+215.9%), and user engagement (+118.7%), without compromising predictive accuracy. Hybrid BI implementation yields significant business impact: process efficiency +35%, cost reduction -27%, analytical accuracy +44%, data processing capacity +85%. Structured HITL mechanism ensures meaningful human input, complete audit trails, and continuous model improvement. Evaluation framework encompasses confusion matrix, multi-metrics (accuracy, precision, recall, F1, specificity, ROC-AUC), and internal-external validity. The primary contribution is the proposed Hybrid BI Architecture that synergizes automatic ML capabilities with human domain knowledge, creating a responsible AI ecosystem with robust governance, full transparency, and measurable accountability for superior organizational decision-making in the digital transformation era.

Downloads

Download data is not yet available.

References

Abu-AlSondosa, I. A., Khder, M. A., & Hassan, N. M. (2023). The impact of business intelligence system (BIS) on quality of decision making. *International Journal of Data and Network Science*, *7*(4), 1849-1862. https://doi.org/10.5267/j.ijdns.2023.7.017

Chatzimparmpas, A., Martins, R. M., Kucher, K., & Kerren, A. (2025). Visual analytics for explainable and trustworthy artificial intelligence: Challenges and opportunities. *IEEE Computer Graphics and Applications*, *45*(2), 9-21. https://doi.org/10.1109/MCG.2024.3510840

Cheong, B. C., Lim, J., & Kim, Y. (2024). Transparency and accountability in AI systems: A review. *Frontiers in Human Dynamics*, *6*, 1421273. https://doi.org/10.3389/fhumd.2024.1421273

Cohen, I. G., Amarasingham, R., Shah, A., & Xie, B. (2023). How AI can learn from the law: Putting humans in the loop via appeals processes. *npj Digital Medicine*, *6*, 156. https://doi.org/10.1038/s41746-023-00906-8

Grand View Research. (2024). *Explainable AI market size & share | Industry report, 2030*. https://www.grandviewresearch.com/industry-analysis/explainable-ai-market-report

Jin, Y., Carrasco-Revilla, A., & Chen, M. (2024). iGAiVA: Integrated generative AI and visual analytics in a machine learning workflow for text classification. *arXiv preprint arXiv:2409.15848*. https://doi.org/10.48550/arXiv.2409.15848

Judijanto, L. (2024). Bibliometric analysis of data-driven decision making in business intelligence. *Eastasouth Journal of Information System and Computer Science*, *2*(2), 137-149.

Leon, M., & DeSimone, H. (2024). Advancements in explainable artificial intelligence for enhanced transparency and interpretability across business applications. *Advances in Science, Technology, Engineering and Systems Journal*, *9*(5), 9-20. https://doi.org/10.25046/aj090502

Maaitah, T. (2023). The role of business intelligence tools in the decision-making process. *Journal of Business & Retail Management Research*, *17*(3), 1-12.

Markets and Markets. (2023). *Explainable AI market size & share, industry trends 2028*. https://www.marketsandmarkets.com/Market-Reports/explainable-ai-market-47650132.html

Rahman, M. M., Chen, X., & Liu, Y. (2025). AI-powered business intelligence: A systematic literature review on the future of decision-making in enterprises. *SSRN Electronic Journal*. https://doi.org/10.2139/ssrn.5183746

Ragazou, K., Passas, I., Garefalakis, A., Galariotis, E., & Zopounidis, C. (2023). Business intelligence model empowering SMEs to make informed decisions. *PLOS ONE*, *18*(2), e0280281. https://doi.org/10.1371/journal.pone.0280281

Sadeghi, K., Bansal, G., & Johansen, T. (2024). Explainable artificial intelligence and agile decision-making processes. *Decision Support Systems*, *176*, 114077. https://doi.org/10.1016/j.dss.2023.114077

Shah, K. (2025). Hybrid analytics architecture: Integrating traditional BI with AI-powered insights. *World Journal of Advanced Engineering Technology and Sciences*, *15*(1), 1283-1291. https://doi.org/10.30574/wjaets.2025.15.1.0351

Trincanato, E., Cinquini, L., & Campanale, C. (2024). Business intelligence in healthcare organizations: A systematic literature review and research agenda. *International Journal of Health Planning and Management*, *39*(3), 816-840. https://doi.org/10.1002/hpm.3778

Wagner, B., & Kuebler, J. (2025). Exploring the antecedents to the effective use of business intelligence. *Information Systems Management*, *42*(2), 117-134. https://doi.org/10.1080/10580530.2025.2479737

Wagner, B., Kuebler, J., & Zalnieriute, M. (2025). Editorial: Humans in the loop: Exploring the challenges of human participation in automated decision-making systems. *Frontiers in Political Science*, *7*, 1611563. https://doi.org/10.3389/fpos.2025.1611563

Wang, J., Zhang, T., Shen, Y., & Yan, J. (2024). Visual analytics for machine learning: A data perspective survey. *IEEE Transactions on Visualization and Computer Graphics*, *30*(12), 7348-7367. https://doi.org/10.1109/TVCG.2024.3456789

Yan, W., Zhang, H., Sun, Y., Li, Y., Zhang, X., Gao, Z., & Zhang, Q. (2025). A hybrid machine learning model with attention mechanism for estimated glomerular filtration rate prediction. *Scientific Reports*, *15*, 13048. https://doi.org/10.1038/s41598-025-98765-4

Downloads

Published

27-10-2025

How to Cite

HYBRID BI MODEL: KOLABORASI MACHINE LEARNING DAN VISUAL ANALYTICS UNTUK PENINGKATAN KETEPATAN PREDIKSI BISNIS. (2025). Jurnal Riset Multidisiplin Edukasi, 2(10), 940-955. https://doi.org/10.71282/jurmie.v2i10.1087

Similar Articles

1-10 of 433

You may also start an advanced similarity search for this article.