Designing a Product Classification Dashboard for Marketing Strategy Using K-Nearest Neighbor

Authors

  • Kadek Intan Cahya Putria Program Studi Teknologi Informasi, Fakultas Teknik, Universitas Udayana, Bali Author
  • Anak Agung Ngurah Hary Susila Program Studi Teknologi Informasi, Fakultas Teknik, Universitas Udayana, Bali Author
  • Ni Putu Sutramiani Program Studi Teknologi Informasi, Fakultas Teknik, Universitas Udayana, Bali Author

DOI:

https://doi.org/10.71282/jurmie.v2i7.726

Keywords:

Dashboard, K-Nearest Neighbor, Data Visualization, Marketing Strategy, Marketing Mix 4P.

Abstract

The development of information technology has driven the use of sales data to support data-driven business decision-making. This study aims to design a dashboard to classify Orlenalycious Padangsambian's products using the K-Nearest Neighbor (K-NN) algorithm to determine more accurate marketing strategies. The methods used include collecting sales data from the Moka POS system, data preprocessing, classification using the K-NN algorithm with K=5, and visualizing the classification results in a Streamlit-based dashboard. The classification results divide the products into three categories: Highly Popular, Popular, and Fairly Popular. The proposed marketing strategy refers to the 4P Marketing Mix, where highly popular products are promoted intensively, popular products are pushed through advertising, and fairly popular products are evaluated or promoted through bundling. The resulting dashboard displays informative visualizations such as pie charts and bar charts to facilitate the analysis of sales trends and product performance. This study provides a solution for Orlenalycious to design more efficient and effective data-driven marketing strategies, as well as offering an easier way to monitor and evaluate product performance in real-time.

Downloads

Download data is not yet available.

References

[1] Fauzi Ramadhan, M., Wibawa, K. S., & Kurniawan, A. Business Intelligence System for Food Distribution Monitoring. Journal of Applied Information and Computing Technology, 2022; 11(2): 132–140

[2] Dalbergio, M., Situmorang, M., & Christian, A. Penerapan Algoritma K-Nearest Neighbor untuk Klasifikasi Tingkat Risiko. Jurnal Informatika dan Komputer, 2019; 4(1): 17–25

[3] Cholil, M., Rahmat, H., & Munir, A. Klasifikasi Tingkat Keaktifan Mahasiswa dengan Algoritma K-Nearest Neighbor. Jurnal Teknologi dan Sistem Komputer, 2021; 9(3): 184–192

[4] Miya Juwita, A., Alamsyah, Y., & Putra, D. Evaluasi Akurasi Algoritma K-NN pada Klasifikasi Minat Baca Mahasiswa. Jurnal Riset Teknologi dan Inovasi Pendidikan, 2022; 5(1): 22–28

[5] Faid, M., Sari, R., & Yuliana, N. Analisis Pengaruh Nilai K terhadap Akurasi K-NN dalam Klasifikasi Produk. Seminar Nasional Teknologi Informasi dan Aplikasi Komputer, Surabaya. 2019; 10: 45–50.

[6] Wahidillah, A., Rofik, R., & Prasetyo, T. Penerapan Euclidean Distance pada Sistem Klasifikasi Produk UMKM. Jurnal Teknologi dan Sains, 2023; 12(1): 39–47.

[7] Sihombing, A. L., & Manurung, S. Desain Dashboard Interaktif untuk Monitoring Penjualan. Jurnal Sistem Informasi, 2019; 7(2): 111–119.

[8] Tholib, A. Dasar Penggunaan Streamlit untuk Aplikasi Data Science. In: Ramadhan, I., Kusuma, A., Editors. Python Tools for Machine Learning. Yogyakarta: Abutholib Press; 2021: 33–54.

[9] Rambe, A., Hanafiah, M., & Anshari, N. Strategi Pemasaran Digital dalam Era Transformasi Bisnis. Jurnal Bisnis dan Inovasi, 2022; 8(1): 99–106.

[10] Haque-Fawzi, M. G., & Sutrisno, H. Strategi Pemasaran: Konsep, Teori dan Implementasi, Edisi Kedua. Jakarta: Rajawali Pers; 2022.

[11] Faizaty, E., & Lestari, W. Strategi Soft Selling Melalui Media Sosial untuk Meningkatkan Brand Awareness. Jurnal Ilmu Komunikasi dan Media, 2021; 6(2): 78–86.

[12] Musrifah, H. Teknik Hard Selling dalam Peningkatan Penjualan Produk UMKM. Jurnal Ekonomi dan Kewirausahaan, 2021; 5(1): 24–29.

[13] Ma’arif, M. Pemrograman Python untuk Analisis Data. Yogyakarta: Graha Ilmu; 2020.

[14] Raharjo, S. Pengenalan Pustaka Python: Pandas, NumPy, dan Matplotlib. Jurnal Teknologi Informatika, n.d.; 4(2): 90–97.

[15] Andarsyah, R., Susanto, A., & Wibowo, S. Pemanfaatan Google Colaboratory dalam Pendidikan Berbasis Data. Jurnal Teknologi Edukasi dan Pembelajaran, 2024; 3(1): 55–63.

[16] Wijoyo, R., Fitriani, D., & Hasan, M. Penerapan Algoritma Machine Learning dalam Sistem Prediksi. Jurnal Sistem dan Informatika, 2024; 6(2): 140–153.

[17] Anhar, R., & Nugraha, Y. Permasalahan Overfitting dalam Model Pembelajaran Mesin. Jurnal Penelitian dan Pengembangan Teknologi Informasi, 2023; 5(1): 70–77.

[18] Firmansyach, I., & Kurniawan, T. Analisis Underfitting pada Proses Pelatihan Model AI. Seminar Nasional Teknologi Komputer dan Sains, Bandung. 2023: 120–126.

[19] Karim, F., Wibowo, A., & Suryana, D. Strategi Marketing Mix 4P untuk Destinasi Pariwisata. Jurnal Manajemen Pariwisata, 2021; 9(3): 33–41.

Downloads

Published

17-07-2025

How to Cite

Designing a Product Classification Dashboard for Marketing Strategy Using K-Nearest Neighbor. (2025). Jurnal Riset Multidisiplin Edukasi, 2(7), 860-871. https://doi.org/10.71282/jurmie.v2i7.726

Similar Articles

1-10 of 301

You may also start an advanced similarity search for this article.