Analisis Bencana Banjir Kab. Boyolali Menggunakan Metode Decision Tree pada Rapid Miner

Authors

  • Muh Rizky Anggara Yunan Putra Prodi Informatika, STMIK Amikom Surakarta Author
  • Dwiningsih Prodi Informatika, STMIK Amikom Surakarta Author
  • Okta Viona Cahyanti Prodi Informatika, STMIK Amikom Surakarta Author
  • Dewi Oktafiani Prodi Informatika, STMIK Amikom Surakarta Author

DOI:

https://doi.org/10.71282/jurmie.v2i12.1339

Keywords:

Flood, Decision Tree, Prediction, Accuracy

Abstract

Flood disasters are a natural phenomenon that often occur in various regions in Indonesia, including cities such as Banjarnegara, Boyolali and Karanganyar. Floods have a significant impact on the economy, social and environment. Therefore, proper understanding and analysis of the factors that cause flooding is very important for effective mitigation efforts. This research uses a decision tree algorithm to analyze meteorological data including temperature, wind speed, humidity and rainfall from various cities in Indonesia. This data includes normal to hot temperature conditions, slightly calm wind speed to light gusts, high to moderate humidity, and extreme to very high rainfall. The results of the analysis show patterns and relationships between these variables and flood events. The decision tree algorithm is used to build a prediction model in the form of a decision tree, which makes interpretation and decision making easier. This research aims to identify the main factors that contribute to flooding and develop a prediction model that can be used to improve preparedness and response to flood disasters. By understanding the patterns and factors that cause flooding, it is hoped that more effective mitigation measures can be implemented to reduce the risk and impact of this disaster.

Downloads

Download data is not yet available.

References

[1] D. Fitrianah, W. Gunawan, and A. Puspita Sari, “Studi Komparasi Algoritma Klasifikasi C5.0, SVM dan Naive Bayes dengan Studi Kasus Prediksi Banjir Comparative Study of Classification Algorithm between C5.0, SVM and Naive Bayes with Case Study of Flood Prediction,” Februari, vol. 21, no. 1, pp. 1–11, 2022.

[2] M. B. Arya Darmawan, F. Dewanta, and S. Astuti, “Analisis Perbandingan Algoritma Decision Tree, Random Forest, dan Naïve Bayes untuk Prediksi Banjir di Desa Dayeuhkolot,” TELKA - Telekomunikasi Elektronika Komputasi dan Kontrol, vol. 9, no. 1, pp. 52–61, 2023, doi: 10.15575/telka.v9n1.52-61.

[3] A. Febriansyah Istianto, A. Id Hadiana, and F. Rakhmat Umbara, “Prediksi Curah Hujan Menggunakan Metode Categorical Boosting (Catboost),” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 4, pp. 2930–2937, 2024, doi: 10.36040/jati.v7i4.7304.

[4] H. Sharfina, P. Y. Utami, and I. Fakhruzi, “Prediksi Bencana Banjir Menggunakan Algoritma Deep Learning H2O Berdasarkan Data Curah Hujan,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 10, no. 4, pp. 2407–4322, 2023, [Online]. Available: http://jurnal.mdp.ac.id

[5] M. A. Hasanah, S. Soim, and A. S. Handayani, “Implementasi CRISP-DM Model Menggunakan Metode Decision Tree dengan Algoritma CART untuk Prediksi Curah Hujan Berpotensi Banjir,” Journal of Applied Informatics and Computing, vol. 5, no. 2, pp. 103–108, 2021, doi: 10.30871/jaic.v5i2.3200.

[6] S. Dwiasnati and Y. Devianto, “Optimasi Prediksi Bencana Banjir menggunakan Algoritma SVM untuk penentuan Daerah Rawan Bencana Banjir,” Prosiding SISFOTEK, pp. 202–207, 2021, [Online]. Available: http://seminar.iaii.or.id/index.php/SISFOTEK/article/view/283

[7] M. Makmun Effendi and A. Siswandi, “Analysis Prediksi Wilayah Rawan Banjir dengan Algoritma K-Means,” Journal of Information System Research (JOSH), vol. 5, no. 2, pp. 697–703, 2024, doi: 10.47065/josh.v5i2.4770.

[8] S. Triyanto, A. Sunyoto, and M. R. Arief, “Analisis Klasifikasi Bencana Banjir Berdasarkan Curah Hujan Menggunakan Algoritma Naïve Bayes,” JOISIE (Journal Of Information Systems And Informatics Engineering), vol. 5, no. 2, pp. 109–117, 2021, doi: 10.35145/joisie.v5i2.1785.

[9] I. Risnawati et al., “Klasifikasi Data Mining Untuk Mengestimasi Potensi Curah Hujan Berdampak Banjir Daerah Menggunakan Algoritma C4.5,” Jurnal INSAN Journal of Information System Management Innovation, vol. 3, no. 2, pp. 78–84, 2023, doi: 10.31294/jinsan.v3i2.3050.

[10] Tasya, Y., & Putri, R. A. (2023). Klasifikasi Tingkat Kerawanan Banjir Wilayah Medan Menggunakan Metode Naive Bayes Dan Algoritma J48. INTECOMS: Journal of Information Technology and Computer Science, 6(2), 657-665.

Downloads

Published

10-12-2025

How to Cite

Analisis Bencana Banjir Kab. Boyolali Menggunakan Metode Decision Tree pada Rapid Miner. (2025). Jurnal Riset Multidisiplin Edukasi, 2(12), 570-578. https://doi.org/10.71282/jurmie.v2i12.1339

Most read articles by the same author(s)

Similar Articles

1-10 of 77

You may also start an advanced similarity search for this article.