Implementasi Algoritma Deep Learning Pada Aplikasi Penerjemah Suara Otomatis Indonesia-Jepang Online

Authors

  • Vega Fajar Habibi Fakultas Teknik Universitas Islam Sumatera Utara Author
  • Khairuddin Nasution Fakultas Teknik Universitas Islam Sumatera Utara Author
  • Aulia Ichsan Fakultas Teknik Universitas Islam Sumatera Utara Author

DOI:

https://doi.org/10.71282/jurmie.v2i7.723

Keywords:

Speech to Text, Machine Translation, Text to Speech, Deep Learning, Recurrent Neural Network, Transformer, Web Speech API, Google Translate API

Abstract

In the era of globalization, information and communication technology has rapidly developed, driving changes in various aspects of life, including the way people communicate. One of the main challenges is cross-linguistic communication, particularly in understanding foreign languages such as Japanese, which uses characters that are different from the Latin alphabet. This study develops a web-based automatic voice translation application that can recognize speech, translate it automatically, and generate human-like speech based on the translation results. The application utilizes three main technologies: Speech to Text, Machine Translation, and Text to Speech. Speech to Text and Text to Speech are implemented using the Web Speech API, while Machine Translation is implemented using the Google Translation API. The Web Speech API uses Recurrent Neural Network (RNN), and the Google Translate API uses Transformer, both of which are methods from Deep Learning algorithms. This application is designed to facilitate cross-lingual communication without the need for typing, manually translating, or directly speaking in a foreign language.

Downloads

Download data is not yet available.

References

Admin. (2021, December 28). Definisi dan Cara Kerja Sistem Text to Speech. Widya Wicara. https://widyawicara.com/definisi-dan-cara-kerja-sistem-text-to-speech/

AWS. (2025). Apa itu Terjemahan Mesin? - Penjelasan tentang Terjemahan Mesin - AWS. Amazon Web Services, Inc. https://aws.amazon.com/id/what-is/machine-translation/

Dr. Budi Raharjo, S.Kom., M.Kom., MM. (n.d.). Deep Learning dengan Python. Yayasan Prima Agus Teknik.

Fitriani, Y., Utami, S., & Junadi, B. (2022). Perancangan Sistem Informasi Human Capital Management Berbasis Website. 6.

Google Cloud Translation AI. (n.d.). Google Cloud Blog. Retrieved April 13, 2025, from https://cloud.google.com/blog/products/ai-machine-learning/google-cloud-translation-ai

Habash, F. (2023, November 27). Understanding the Basics: What is Machine Translation? Localization Services by BLEND. https://www.getblend.com/blog/what-is-machine-translation/

Handayani, R., Rachmat, Z., & S, W. (2022). Perancangan Aplikasi E-Learning Berbasis Website Pada SMP Negeri 3 Watansoppeng. Jurnal Manajemen Informatika, Sistem Informasi dan Teknologi Komputer (JUMISTIK), 1(1), 43–54. https://doi.org/10.70247/jumistik.v1i1.8

Hawari Nasution, M. A. A., Siswanto, S., & Suryana, E. (2023). RANCANGAN MEDIA PEMBELAJARAN BERUPA APLIKASI AUGMENTED REALITY BERBASIS ANDROID. JURNAL MEDIA INFOTAMA, 19(2), 528–537. https://doi.org/10.37676/jmi.v19i2.4771

Hosting, R. J. (2022, June 22). Apa itu Flowchart? Fungsi, Simbol & Jenisnya. Blog Jagoan Hosting. https://www.jagoanhosting.com/blog/flowchart-adalah/

Istiqomah, D., Diner, L., & Wardhana, C. K. (2015). ANALISIS KESULITAN BELAJAR BAHASA JEPANG SISWA SMK BAGIMU NEGERIKU SEMARANG.

Jaman, A. B., & Fergina, A. (2021). Implementasi Speech Recognition Berbasis Android Dalam Optimalisasi Komunikasi Bagi Penyandang Tunarungu. Jurnal Teknik Informatika UNIKA Santo Thomas, 373–378. https://doi.org/10.54367/jtiust.v6i2.1508

Khairiah, I. (n.d.). Algoritma Pemrograman: Studi Pustaka Pemahaman Algoritma Pemrograman. 1(4). https://doi.org/10.59581/konstanta.v1i4.1673

Khoiriyah, R. (n.d.). PROGRAM STUDI S1 – TEKNIK INFORMATIKA JURUSAN TEKNOLOGI INFORMASI FAKULTAS TEKNOLOGI INFORMASI DAN KOMUNIKASI UNIVERSITAS SEMARANG 2023.

Lubis, N., Siambaton, M. Z., & Aulia, R. (2024). Implementasi Algoritma Deep Learning pada Aplikasi Speech to Text Online dengan Metode Recurrent Neural Network (RNN). 3(3).

Mallisa, I. G. (2021). IMPLEMENTASI INTEGRATED DEVELOPMENT ENVIRONMENT (IDE) BERBASIS WEB UNTUK PEMROGRAMAN JAVASCRIPT.

Nugroho, P. A., Fenriana, I., Arijanto, R., & Kom, M. (2020). IMPLEMENTASI DEEP LEARNING MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK ( CNN ) PADA EKSPRESI MANUSIA. 2(1).

Oleh, D., & Irawan, F. (n.d.). PREDIKSI CURAH HUJAN MENGGUNAKAN RECURRENT NEURAL NETWORK (RNN) DAN LONG SHORT-TERM MEMORY (LSTM).

Parjito, Oktavia Rahmawati, & Faruq Ulum. (2022). Rancang Bangun Aplikasi E-Agribisnis Untuk Meningkatkan Penjualan Hasil Tanaman Hortikultura. Jurnal Informatika Dan Rekayasa Perangkat Lunak (JATIKA), 3(3), 354–365. http://jim.teknokrat.ac.id/index.php/informatika

Prastyo, M. E. (n.d.). PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS KOMUNIKASI DAN INFORMATIKA UNIVERSITAS MUHAMMADIYAH SURAKARTA 2022.

Saientisna, M. D., Sukarini, N. W., & Juliana, K. A. (n.d.). Implementasi Aplikasi Penerjemah Multi Bahasa Berbasis Python dengan Integrasi Google Translate API dan GUI Tkinter. 17.

Silverwood Summit. (2023). Memahami Dasar-Dasar HTML dan CSS: Fondasi Pengembangan Web. Teknologiterkini.Org, 3(9).

Swapurba, G., & Pratama, I. (2023). Implementasi Voice To Text Pada Invoice Checking Berbasis Web. Intechno Journal (Information Technology Journal), 5(2), 65–74. https://doi.org/10.24076/intechnojournal.2023v5i2.1391

UMA, B. (2024, June 29). Teknologi Speech Synthesis: Transformasi dan Inovasi. Biro Perencanaan Mutu Pendidikan dan Pembelajaran Terbaik di Sumatera Utara. https://bpmpp.uma.ac.id/2024/06/29/teknologi-speech-synthesis-transformasi-dan-inovasi-dalam-komunikasi-digital/

Downloads

Published

16-07-2025

How to Cite

Implementasi Algoritma Deep Learning Pada Aplikasi Penerjemah Suara Otomatis Indonesia-Jepang Online. (2025). Jurnal Riset Multidisiplin Edukasi, 2(7), 806-828. https://doi.org/10.71282/jurmie.v2i7.723

Similar Articles

1-10 of 65

You may also start an advanced similarity search for this article.